Search results for "Isotopes of neon"
showing 7 items of 7 documents
Exclusive measurements of nuclear breakup reactions of 17Ne
2014
F. Wamers et al.; 4 pags.; 2 figs. Open Access funded by Creative Commons Atribution Licence 2.0
Radioactivity of neutron-rich oxygen fluorine and neon isotopes
1999
The $\ensuremath{\gamma}$ radiation and neutrons emitted following the $\ensuremath{\beta}$ decays of ${}^{24}\mathrm{O},$ ${}^{25--27}\mathrm{F},$ and ${}^{28\ensuremath{-}30}\mathrm{Ne}$ have been measured. The nuclides were produced in the quasifragmentation of a 2.8 GeV ${}^{36}\mathrm{S}$ beam, separated in-flight and identified through time-of-flight and energy-loss measurements. The ions were stopped in a silicon detector telescope, which was used to detect the $\ensuremath{\beta}$ particles emitted in their subsequent radioactive decay. The coincident $\ensuremath{\gamma}$ rays were measured using four large volume germanium detectors mounted close to the implantation point and the …
Nuclear moments of neon isotopes in the range fromNe17at the proton drip line to neutron-richNe25
2005
Nuclear moments of odd-A neon isotopes in the range 17 ≤ A ≤ 25 have been determined from optical hyperfine structures measured by collinear fast-beam laser spectroscopy. The magnetic dipole moments of 17 Ne, 23 Ne and 25 Ne, as well as the electric quadrupole moment of 23 Ne are either reported for the first time or improved considerably. The measurements also decide for a 1/2 + ground state of 25 Ne. The behavior of the magnetic moments of the proton drip-line nucleus 17 Ne and its mirror partner 17 N suggests isospin symmetry. Thus, no clear indication of an anomalous nuclear structure is found for 17 Ne. The magnetic moments of the investigated nuclei are discussed in a shell-model appr…
Laser spectroscopy measurement of isotope shifts and nuclear moments of short-lived neon isotopes
2003
Within the scope of a laser spectroscopy study of nuclear structure in the sd shell we are measuring nuclear moments and isotope shifts of neon isotopes. An ultra-sensitive variant of collinear laser spectroscopy [1, 2] is applied to a neutralized fast beam from ISOLDE (CERN). The non-optical detection is based on optical pumping, state selective collisional ionization and β-activity counting. This method gives access in particular to the short-lived isotopes in the extended chain of 17–26,28Ne.
Charge radii of neon isotopes across the sd neutron shell
2011
We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable Ne-20, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate Ne-17 up to the…
Lifetime measurements in mirror nuclei31S and31P: A test for isospin mixing
2011
Using the 20Ne + 12C fusion-evaporation reaction at E20Ne = 33 MeV and the multidetector array GASP in conjuction with the EUCLIDES charged particle detector, angular correlations of coincident pairs of γ transitions and lifetimes in mirror nuclei 31S and 31P have been measured at the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. A comparison of the determined B(E1) strengths of the analog mirror 7/2− → 5/2+ transitions indicates the presence of a violation of isospin symmetry.
High-accuracy mass measurements on neutron deficient neon isotopes
2005
International audience; The atomic masses of the short-lived nuclides 17Ne and 19Ne have been measured with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The obtained mass excess for both nuclides deviates significantly from the literature value, in the case of 17Ne about 40 keV. The mass value of 17Ne can be applied for a test of the isobaric multiplet mass equation with respect to an isospin T = 3/2 quartet. In addition, both masses can contribute to the data analysis of collinear laser-spectroscopy experiments where mean-square nuclear-charge radii are determined.